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1990s, but, in addition, the majority of implementations
of linkage statistics in commonly used software do not
suffer from this “bias” toward the null hypothesis in the
presence of uninformative families. Furthermore, the use
of highly informative markers in a multipoint analysis
will result in very few families being fully uninformative
for IBD sharing.
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quential genetic linkage computations. Am J Hum Genet 53:
252–263

Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2000) Al-
legro, a new computer program for multipoint linkage anal-
ysis. Nat Genet 25:12–13

Haseman JK, Elston RC (1972) The investigation of linkage
between a quantitative trait and a marker locus. Behav Genet
2:3–19

Hinds D, Risch N (1996) The ASPEX package: affected sib-pair
exclusion mapping. Available at: http://aspex.sourceforge
.net/. Accessed August 2, 2004

Holmans P (1993) Asymptotic properties of affected–sib-pair
linkage analysis. Am J Hum Genet 52:362–374

Kong A, Cox NJ (1997) Allele-sharing models: LOD scores
and accurate linkage tests. Am J Hum Genet 61:1179–1188

Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Para-
metric and nonparametric linkage analysis: a unified mul-
tipoint approach. Am J Hum Genet 58:1347–1363

Kruglyak L, Lander ES (1995) Complete multipoint sib-pair
analysis of qualitative and quantitative traits. Am J Hum
Genet 57:439–454

Ott J (1989) Computer-simulation methods in human linkage
analysis. Proc Natl Acad Sci USA 86:4175–4178

Risch N (1990) Linkage strategies for genetically complex

traits. III. The effect of marker polymorphism on analysis
of affected relative pairs. Am J Hum Genet 46:242–253

Schork NJ, Greenwood TA (2004) Inherent bias toward the
null hypothesis in conventional multipoint nonparametric
linkage analysis. Am J Hum Genet 74:306–316

T.Cuenco K, Szatkiewicz JP, Feingold E (2003) Recent ad-
vances in human quantitative-trait–locus mapping: com-
parison of methods for selected sibling pairs. Am J Hum
Genet 73:863–873

Weeks DE, Ott J, Lathrop GM (1990) SLINK: a general sim-
ulation program for linkage analysis. Am J Hum Genet 47:
A204

Address for correspondence and reprints: Dr. Daniel E. Weeks, Department
of Human Genetics, University of Pittsburgh, Crabtree Hall, Room A302A, 130
DeSoto Street, Pittsburgh, PA 15261. E-mail: dweeks@watson.hgen.pitt.edu

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7504-0020$15.00

Am. J. Hum. Genet. 75:718–720, 2004

Conventional Multipoint Nonparametric Linkage
Analysis Is Not Necessarily Inherently Biased

To the Editor:
Schork and Greenwood (2004) recently reported that
there is an inherent bias toward the null hypothesis in
conventional multipoint linkage analysis in which ex-
pected values are used for allele sharing between relatives
when, in fact, there is no information on their identity-
by-descent (IBD) sharing status. The implications of
Schork and Greenwood’s results are serious, because
they suggest that the power of detection of disease genes
or QTLs is compromised. Here, we show that their re-
sults are based on a comparison of test statistics that
have different variance (and, therefore, have different
distribution) and so should not be compared directly and
that the usual way in which inference is made from mul-
tipoint nonparametric linkage is, in fact, correct. In ad-
dition, we demonstrate that, for linkage analysis of
quantitative traits, the effect of mixing informative and
uninformative sib pairs on the test statistic is very small
and very unlikely to be of practical importance.

Schork and Greenwood (2004) use the analogy of a
coin-tossing experiment to make their main point, and
we use the same experiment to contest their conclusion.
Suppose a coin is tossed 100 times to test the hypothesis
that it is fair (i.e., that it gives a 1:1 ratio of heads to
tails). The outcome of the experiment is observed in only
50 tosses, and, of those 50 tosses, 40 are heads. The
estimate of the probability of heads ( ) from the obser-p̂
vation that 40 of 50 observed tosses are heads is thus
0.80. If we assign the expected values (under the null



Letters to the Editor 719

hypothesis) for the 50 unobserved tosses (25 tails and
25 heads), the estimate of the probability of heads is
0.65. Schork and Greenwood use the fact that the es-
timate of 0.65 is !0.80 to make their point that there is
an inherent bias toward the null hypothesis when unob-
served outcomes are assigned an expected value under
the null hypothesis. However, to draw statistical infer-
ence from this experiment, we need to compare the ob-
served statistic (in this case, the estimate of the prob-
ability of heads) with the variance of that statistic under
the null hypothesis (H0), to create a test statistic. In the
case of , the variance under the null hypothesisp̂ p 0.80
is . If, without loss of general-0.5(1 � 0.5)/50 p 0.005
ity, we create a test statistic (T) that is the deviation of
the estimate from its expectation, divided by the SE of
the estimate—that is, —we ob-ˆ ˆT p (p � 0.50)/j (pFH )0

tain the T value .� �(0.80 � 0.50)/ 0.005 p 3 2 (p 4.24)
The variance of the estimate of 0.65 is [(50)(0.50)(1 �

, and, in this case, the test20.50) � 0] / 100 p 0.00125
statistic is . Hence, the� �(0.65 � 0.50) / 0.00125 p 3 2
two test statistics are identical, and the inference from
both experiments is the same, if the correct variance of
the sufficient statistic is used. Despite the lower estimate
of the probability of heads for the case in which unob-
served outcomes were assigned the expected value, the
test statistic is the same, because the variance of the
estimate is lower. This should not be surprising, because
all we have done in the second case is add a constant
to a random variable and scale it by another constant.

With linkage analysis, the same analogy holds. Schork
and Greenwood (2004) base their conclusions on pre-
sented statistics (likelihood-ratio scores) and implicitly
assume that the distribution of these test statistics under
the null hypothesis is the same for all comparisons, when
it is not. For collections of small families, computer pro-
grams such as GeneHunter (Kruglyak et al. 1996) and
Merlin (Abecasis et al. 2002) calculate the correct var-
iance of the sharing statistic, conditional on all observed
marker information; therefore, the correct test statistic
and P value are computed (see also Cordell [2004]). For
large complex pedigrees, the exact variance of the shar-
ing statistic cannot be computed, and it has been pointed
out elsewhere that to assume fully informative markers
when there is missing information can reduce power of
detection (Kong and Cox 1997). Kong and Cox (1997)
present a modification of the test statistic, taking into
account that the precision of the estimation of IBD allele
sharing varies between pairs of relatives.

Linkage analysis of quantitative traits to map QTL is
typically a two-stage procedure with several well-known
approximations. In the first stage, IBD probabilities are
calculated (or IBD proportions are estimated) and, in
the second stage, a regression or variance analysis is
performed using the phenotypes and IBD proportions.
One implicit assumption of these methods is that the

proportion of alleles shared IBD between a pair of in-
dividuals is known without error. This is most easily seen
in those least-squares regression methods in which the
estimated proportions of alleles shared IBD ( ) are thep̂

x variables, because, in regression analysis, the x values
are taken as “fixed.” If marker informativeness varies
between families (or between pairs of individuals within
a family), then this variation is not taken into account
in these analyses, and one would not expect these QTL-
mapping methods to be invariant with respect to un-
informative pairs. The approximation in the use of the
expected proportion of alleles shared IBD, instead of the
full distribution, has been tested (e.g., by Gessler and
Xu [1996]). Gessler and Xu (1996) explicitly make the
distinction between the “distribution approach” and the
“expectation approach” and conclude that there is little
difference between them, in terms of power. Cordell
(2004) performed simulations to investigate the “bias”
in the test statistic for a number of regression and var-
iance-components QTL-mapping methods. As acknowl-
edged by the author, the simulation parameters used
were rather extreme, because there was no sibling re-
semblance other than that due to a single diallelic QTL,
and this QTL explained 190% of the phenotypic vari-
ance. Cordell (2004) showed the mean difference in the
test statistic when uninformative pairs were left out or
were kept in the analysis and showed the SD of that
difference for a range of test statistics. However, the scale
of the test statistic varies between methods, and the mean
and SD of the difference in test statistics do not neces-
sarily show how important these results are in practice.
We have performed additional simulations, using both
Cordell’s parameters and a less extreme set of param-
eters, and have expressed the mean and SD of the dif-
ference in test statistics when uninformative pairs are
left out or are kept in, as a function of the average test
statistic and the SD of the test statistic. Results are shown
in table 1 for the Haseman-Elston LOD (HE-LOD) and
variance-components LOD (VC-LOD) methods (see
Cordell [2004] for details). Clearly, when put in per-
spective, the effect on the test statistic either of keeping
uninformative pairs in the analysis or of removing them
is very small. For example, even in the extreme case of
a QTL heritability of 98% and 50% uninformative
pairs, the average difference in test statistics is only 4%
(HE-LOD) and !1% (VC-LOD) of the average test sta-
tistic, and the SD of the difference in test statistics when
uninformative pairs are kept in or left out is only 6%
(HE-LOD) and 2% (VC-LOD) of the SD of the test
statistic. As Cordell (2004) pointed out, the slight in-
crease in the HE-LOD test statistic when uninformative
pairs are removed is the result of a decrease in the re-
sidual variance in the regression analysis. The decrease
in the VC-LOD when uninformative pairs are removed
(too small to show in table 1 but reported by Cordell
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Table 1

Results from Simulations to Show the Relative Impact of Uninformative Pairs on QTL Analysis for Different Values of
Polygenic and QTL Heritability and Different Percentages of Uninformative Markers

HERITABILITY
UNINFORMATIVE

MARKERS

(%) NO. OF PAIRS

HE-LODb VC-LODb

Polygenic QTL dT/E(T) j(d)/E(T) j(d)/j(T) dT/E(T) j(d)/E(T) j(d)/j(T)

0 .90 50 1,000a 4 7 6 0 1 2
0 .98 50 1,000a 4 11 9 0 2 2
.5 .10 10 10,000 0 2 1 0 1 0
.5 .10 20 10,000 0 2 1 0 1 0
.5 .10 30 10,000 0 3 1 0 1 0
.5 .10 40 10,000 0 4 1 0 1 0
.5 .10 50 10,000 0 5 1 0 2 0
.5 .10 60 10,000 0 6 2 0 2 0
.5 .10 70 10,000 0 8 2 0 2 0
.5 .10 80 10,000 0 11 2 0 4 1
.5 .10 90 10,000 0 16 3 0 8 1

a The data in the first two rows correspond to the simulated scenario (2) of Cordell (2004) and are based on 10,000 replicates.
For all other data, a normally distributed additive QTL was simulated, and results are averages from 1,000 replicates.

b dT is the average difference between the test statistic achieved when uninformative pairs are removed from the analysis
and the one achieved when they are kept in the analysis. j(d) is the SD of the difference between the test statistic achieved
when uninformative pairs are removed from the analysis and the one achieved when they are kept in the analysis. E(T) is the
average test statistic achieved when uninformative markers are removed from the analysis. j(T) is the SD of the test statistic
when uninformative markers are removed from the analysis. All ratios are expressed as percentages.

[2004]) is very small because, presumably, the pheno-
types of the uninformative pairs provide information on
the estimation of the sibling variance and average co-
variance, and this information is used in the maximum-
likelihood analysis. Hence, removal of uninformative
pairs may indirectly decrease information on linkage.

We conclude that commonly used nonparametric al-
lele-sharing methods, as implemented in major statisti-
cal-genetics computer programs, do not suffer from an
inherent bias toward the null hypothesis when expected
values of IBD sharing are used in the absence of observed
IBD sharing and that QTL-mapping methods are not
invariant but are robust to mixtures of informative and
uninformative pairs.
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“Bias toward the Null” Means Reduced Power

To the Editor:
In a recent article published in the Journal, Schork and
Greenwood (2004) discuss the effects of uncertainty in
inferred identity-by-decent (IBD) sharing on nonpara-
metric linkage analysis. Tests based on inferred IBD
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